
COMP 520 - Compilers

Lecture 18 – Abstract Syntax Trees, Why??

1

Reminders
• Midterm 2 on Thursday, 4/11
• Make sure you have some experience in PA4

2
COMP 520: Compilers – S. Ali

Announcements
• I have finished reading all PA3 submissions done by

Sunday night (keep working if you’re not done).

• This lecture is targeted towards making sure we all
understand the power of ASTs.

3
COMP 520: Compilers – S. Ali

Announcements (2)
• A small portion of you maximized AST potential.
• A good portion nearly maximized their potential, and

a good portion had a lot of redundant code.

• Today we uncover the secrets of ASTs.

4
COMP 520: Compilers – S. Ali

Why are we using ASTs?
• Is it just some arbitrary decision that is just

 “one way to do Compilers”?

5
COMP 520: Compilers – S. Ali

Why are we using ASTs?
• Is it just some arbitrary decision that is just “one way to do

Compilers”?
• Yes and no. Yes it is, but it makes life easier for us. No, it

will make life harder for you otherwise, so we should learn
ASTs.

• Examples of “no”: bogo sort
• (Note: with some language exceptions, ASTs can look vastly

different, but the core concept remains the same).
•Today’s question: did ASTs make our lives
easier?

6
COMP 520: Compilers – S. Ali

Visitor Model
A quick review

7
COMP 520: Compilers – S. Ali

AST
public abstract class AST {

 public abstract <A,R> R visit(Visitor<A,R> v, A o);

}

8
COMP 520: Compilers – S. Ali

This is an abstract class.
This method is not defined.

AST (2)
public abstract class AST {

 public abstract <A,R> R visit(Visitor<A,R> v, A o);

}

9
COMP 520: Compilers – S. Ali

Visit is defined in concrete classes:

Concrete Visit Method

10
COMP 520: Compilers – S. Ali

Let’s build the framework to see this in action.

Recall Creating Statement Lists

11
COMP 520: Compilers – S. Ali

“So long as input isn’t a }, keep giving me an abstract Statement
 object returned by parseStatement();”

A peek into parseStatement

12
COMP 520: Compilers – S. Ali

“This method will return a Statement.
What kind of statement? No idea!”

BlockStmt, which extends Statement
and has a defined visit method.

ReturnStmt, which extends Statement
and has a defined visit method.

WhileStmt, which extends Statement
and has a defined visit method.

A peek into visitStatement (2)

13
COMP 520: Compilers – S. Ali

“This method will return a Statement.
What kind of statement? No idea!”

BlockStmt, which extends Statement
and has a defined visit method.

ReturnStmt, which extends Statement
and has a defined visit method.

WhileStmt, which extends Statement
and has a defined visit method.

Calling an Abstract Method

14
COMP 520: Compilers – S. Ali

“I don’t know what type this Statement “s” is, but I know
it was instantiated with a REAL visit method”

Why?

ME=Identification

Calling an Abstract Method (2)

15
COMP 520: Compilers – S. Ali

“During runtime, the visit method maps here
 for this particular example Statement”
(Afterall, it had to be instantiated somehow)“Statement is WhileStmt”

Calling an Abstract Method (3)

16
COMP 520: Compilers – S. Ali

Parameter and Argument. When visiting,
 the first parameter is always “this”

Calling an Abstract Method (4)

17
COMP 520: Compilers – S. Ali

So this WhileStmt’s visit method just calls
the CALLER’s visitWhileStmt method.

Calling an Abstract Method (5)

18
COMP 520: Compilers – S. Ali

This means, s.visit(…) code is equivalent to:
if(s instanceof WhileStmt)
 visitWhileStmt(s, arg);
… … …

“Call MY
visitWhileStmt”

ME

PA2 - ASTs
• In case you forgot, you instantiated the concrete

classes in PA2 in your parser.

• So when you instantiated a concrete “VardeclStmt”,
you specified “if you visit this Statement, make sure
you pair it with ‘visitVarDeclStmt’ for whoever the
visitor is.”

19
COMP 520: Compilers – S. Ali

The Terrifying, Terrific,
Tantalizing, Tormenting Truth
 of ASTs
Elegantly combine parsing and input code traversal.

20
COMP 520: Compilers – S. Ali

Identification
• Consider wanting to implement this:
visitIdentifier(Identifier id, String ctx) ::=

 id.decl = findDeclaration(ctx, id);

 return id.decl;

• (It won’t know the context, needs it to be passed in)

21
COMP 520: Compilers – S. Ali

Package…
• Package contains: ClassDeclList, which is just a list of

ClassDecls
• Parser: parseClassDecl- Returns a ClassDecl.

• Add each ClassDecl into our list

22
COMP 520: Compilers – S. Ali

ClassDecl
• Contains a FieldDeclList (member variables) and

MethodDeclList (member methods)

• If it was a method, you would parseStatement until
out of statements, and store that in the MethodDecl.

23
COMP 520: Compilers – S. Ali

Visiting a Method
• Thus, when you visit the Statements in a
MethodDecl, you visit the Statement objects that you
instantiated in PA2.

• Those statements contained Expressions that you
also created in PA2.

24
COMP 520: Compilers – S. Ali

The Mysteries of References

25
COMP 520: Compilers – S. Ali

Recall: Creating References

26
COMP 520: Compilers – S. Ali

Grammar: Reference ::= id | this | Reference . id
Improved: (this|id)(.id)*

Recall: Creating References (2)

27
COMP 520: Compilers – S. Ali

Implies: only three
types of references.

IdRef,
ThisRef,
QualRef.

Confirmed

Note: If Identifiers have a Decl, then
References map to a Decl too!

28
COMP 520: Compilers – S. Ali

Note: If Identifiers have a Decl, then
References map to a Decl too!

29
COMP 520: Compilers – S. Ali

• Thus, references map to some memory location. See CFGs:
• Reference [Expression] - Reference because it must be a variable
• Reference (ArgumentList?) - Reference because it must be a method
• Reference = Expression ; - Reference because need to store data.

• Makes sense, use references to “refer to something” whereas
expressions need to be evaluated.

Parsing VS Grammar
• Grammar:

• Reference ::= id | this | Reference . id
• Parsing:

• Reference ::= (this|id)(.id)*

•Parsing is misleading!
30

COMP 520: Compilers – S. Ali

Parsing VS Grammar (2)
• Grammar:

• Original: Reference ::= id | this | Reference . id
• Try this: QualRef ::= (ThisRef|IdRef)(.id)+
• Useful to view them as AST grammars instead!

•Question: What is the only repeating
component?

31
COMP 520: Compilers – S. Ali

Parsing VS Grammar (3)
• Grammar:

• Reference ::= id | this | Reference . id
• Try this: QualRef ::= (ThisRef|IdRef)(.id)+
• The only repeating element is identifiers.

• AST Example:
IdRef . Identifier . Identifier . Identifier

32
COMP 520: Compilers – S. Ali

IdRef
• Thus, if you visit an IdRef, Then it was either a plain

“id” used as a reference, or the left-most identifier in
a QualRef.

• THEREFORE: visitIdRef is ALWAYS in the context of the
current class.

33
COMP 520: Compilers – S. Ali

IdRef (2)
• Thus, if you visit an IdRef, Then it was either a plain “id”

used as a reference, or the left-most identifier in a QualRef.
• THEREFORE: visitIdRef is ALWAYS in the context of the

current class.

• And the implementation for PA3 is…
visitIdRef ::=
 ref.id.visit(this, currentClassName);
 // (CTX is currentClass)

34
COMP 520: Compilers – S. Ali

IdRef (Recall visitIdentifier)
visitIdRef ::=

 ref.id.visit(this, currentClassName);

 … // Do checks for non-static in static method

visitIdentifier(Identifier id, String ctx) ::=

 id.decl = findDeclaration(ctx, id);

35
COMP 520: Compilers – S. Ali

Question: do I need a private check here?

The mysteries of RefExpr

36
COMP 520: Compilers – S. Ali

Recall Fail351.java

37
COMP 520: Compilers – S. Ali

Method, not
 variable.

Recall: CallExpr / CallStmt
• Grammar:

• CallStmt ::= Reference (ArgumentList?) ;
• CallExpr ::= Reference (ArgumentList?) ;
• RefExpr ::= Reference ;

38
COMP 520: Compilers – S. Ali

You did this in PA2

39
COMP 520: Compilers – S. Ali

Instantiate a
CallExpr vs RefExpr

You did this in PA2 (2)

40
COMP 520: Compilers – S. Ali

DISJOINT
CASES

Thus, PA3 check becomes easier.
• If it is a RefExpr, then it is not a CallExpr.
• Therefore, visitRefExpr, if the reference’s

declaration is a MethodDecl, then it is wrong.
• E.g. x = someFn; instead of x = someFn();

• In a CallExpr, if the reference’s declaration is NOT a
MethodDecl, then it is wrong.

• E.g. int x = 0; int y = 0; y = x();

41
COMP 520: Compilers – S. Ali

The mysteries of QualRef

42
COMP 520: Compilers – S. Ali

Figuring out QualRef
Left-hand-side

Returned
Declaration
after a Visit

Notes Notes 2

Identifier:
“CLASSNAME”

Declaration:
ClassDecl

RHS must be a
static ??

If the RHS is
declared in a

different class,
RHS cannot be

private.

Identifier:
“this”

Declaration:
ClassDecl

RHS must be a
??

Identifier:
“NAME”

(not a class)

Declaration:
MemberDecl or
LocalDecl

RHS must be a
??

43
COMP 520: Compilers – S. Ali

First question: An identifier
on the RHS of a QualRef is
at what level of SI?

Figuring out QualRef
Left-hand-side

Returned
Declaration after a

Visit
Notes Notes 2

Identifier:
“CLASSNAME”

Declaration:
ClassDecl

RHS must be a static
MemberDecl

If the RHS is
declared in a

different class, RHS
cannot be private.

Identifier:
“this”

Declaration:
ClassDecl

RHS must be a
MemberDecl

Identifier:
“NAME”

(not a class)

Declaration:
MemberDecl or
LocalDecl

RHS must be a
MemberDecl

44
COMP 520: Compilers – S. Ali

Figuring out QualRef

Left-hand-
side

Returned
Declaration
after a Visit

Notes Notes 2

Identifier:
“CLASSNAME”

IdRef / Id

Declaration:
ClassDecl

RHS must be a
static

MemberDecl If the RHS is
declared in a

different
class, RHS
cannot be

private.

Identifier:
“this”

ThisRef

Declaration:
ClassDecl

RHS must be a
MemberDecl

Identifier:
“NAME”

(not a class)

Declaration:
MemberDecl

or LocalDecl

RHS must be a
MemberDecl

45
COMP 520: Compilers – S. Ali

Translate this table into code. (Cleanup required)

1) If LHS.decl instanceof ClassDecl, then RHS must be static
 unless LHS instanceof ThisRef
2) Resolve RHS in the context of LHS
 2a) If LHS.decl is ClassDecl, easy, ctx is that class’s name
 2b) If LHS.decl is MemberDecl, get that member’s classname
 2c) If LHS.decl is LocalDecl, easy, ctx is that class type’s name.
3) RHS.decl is always instanceof MemberDecl

Additional checks:
4) LHS cannot be a MethodDecl (miniJava shortcut)
5) If RHS is private, check if current class name equals their class
6) LHS must be a ClassType (classes have fields, everything else
does not) if it isn’t a ThisRef.
 6a) Thus, visit the ClassType to get the ClassDecl of the LHS.

How does this help in PA3?

46
COMP 520: Compilers – S. Ali

PA3 Summarized
• Make Stack<HashMap<String,Declaration>> SI;
• Create level 0 and 1 immediately
• Forcibly inject predefined names into level 0 and 1

• Level 0: String, _Printstream, System
• Level 1: _Printstream.println, System.out\

47
COMP 520: Compilers – S. Ali

PA3 Summarized (2)
• Forcibly inject all Classes and Fields into level 0 and 1

• Is this class name used at level 0? Error, or add the class
name to level 0.

• Is this field name used at level 1? Error, or add the name
to level 1 (with context).

• Begin visiting classes

48
COMP 520: Compilers – S. Ali

PA3 Summarized (3)
• Begin visiting classes.
• Visit everything (e.g. visitArrayType visits the

element type, and MethodDecl visits internal
Statements, etc.)

• visitClassDecl: Name already added, just visit methods.
• visitMethodDecl: Name already added, just visit statements.
• visitParameterDecl: Does it already exist at level 2+?

49
COMP 520: Compilers – S. Ali

PA3 Summarized (4)
• visitClassType: The identifier better be a class name!

• Why?

• visitBaseType: do nothing.
• Why?

• visitArrayType: visit the element type.
• Why?

50
COMP 520: Compilers – S. Ali

PA3 Summarized (5)
• visitVarDecl: Does the name exist at 2+?

• Question: How can I only check 2+?
• Error or add at top scope level

• visitCallStmt: Just to reiterate as an example, visit all of
 the expressions in the Call (visit everything!).
 Visit the Reference too, and that reference better be
 have a methodDecl.

51
COMP 520: Compilers – S. Ali

PA3 Summarized (6)
• visitThisRef: Return “CurrentClassDecl”

• How can we keep track of the currentClassDecl?

• visitIdRef: Are we in a static method? If so and if the
 decl is a MemberDecl (level 1), make sure the IdRef’s
 identifier’s declaration is static and not currently being
 declared. (IdRef means access local class fields or locals)

52
COMP 520: Compilers – S. Ali

PA3 Summarized (7)
• visitRefExpr: A reference expression (keyword: expression)

cannot just have a reference be a class name.
• Is the reference.decl a ClassDecl (and ref not instanceof

ThisRef), then error. (E.g. x = CLASSNAME;)
• Similarly, RefExpr cannot be a MethodDecl, otherwise it

should have been a CallExpr not RefExpr.
• E.g., x = method; vs x = method();

• visitCallExpr: Like CallStmt.
• visitQRef: Do Slide 44 check.
• Etc.

53
COMP 520: Compilers – S. Ali

PA3 Type-Checking
• Every useful node returns a TypeDenoter.
• Two types of type-checks:

• Are these two types the same?
• Given two types and an operator, what is the result type?

• Example: At every visit method, ask,
“What needs to be ensured here?
 What MUST be a ClassType?
 What MUST be an ArrayType (IxExpr)?
 What MUST be the same type (AssignStmt)?”

54
COMP 520: Compilers – S. Ali

Midterm 2 Review

55
COMP 520: Compilers – S. Ali

Midterm 2 is shorter
• Because of delays, it doesn’t make sense to have a full

midterm this late in the semester.
• Instead, we made the midterm shorter by a question

(and arguably easier).

• Your main goals should be to learn PA4, which is
worth more than the midterm.

56
COMP 520: Compilers – S. Ali

Optimization
• Dataflow / Codeflow analysis is not on the midterm.

• Key takeaway from optimization:
• You don’t need to respect the input code, can generate

more optimized code.

57
COMP 520: Compilers – S. Ali

Byte Encoding / ModRMSIB
• You already learned how to do this in earlier

prerequisite classes.
• PA4 is new because of CISC, but it isn’t Midterm-worthy.

• Don’t worry about encoding bytes.

58
COMP 520: Compilers – S. Ali

What should you know?
• How to generate “equivalent” code
• How to do identification and type-checking
• Midterm is cumulative with PA1 and PA2

• You should have some general mastery over what you
have done on your compiler project

59
COMP 520: Compilers – S. Ali

Side notes about PA4
• If “int is 4 bytes” is giving you trouble, just make

everything 8 bytes and fix it later.
• Some PA4 starter files have “TODO” marked but won’t

flag a compiler error. Easiest way to handle this:
Find the word “TODO” in the starter files.

60
COMP 520: Compilers – S. Ali

Feedback I’ve gotten thus far
• “I’m trying to compile a simple println program and

that is dope”
• Response: just imagine what it will be like when it is fully

functional! (Imagine the stuff you can do with the compiler too)

• “A lot of the code isn’t mine, how can I attribute this?”
• Response: the starter code is boring, you are

implementing the more interesting stuff. Imagine adding a
ton of line breaks and claiming you do a lot of LOCs.
YOU control the interesting parts.

61
COMP 520: Compilers – S. Ali

Questions?
• Let’s go over how the midterm is used
• Let’s go over the cheat sheet

62
COMP 520: Compilers – S. Ali

End

63

64
COMP 520: Compilers – S. Ali

65
COMP 520: Compilers – S. Ali

66
COMP 520: Compilers – S. Ali

67
COMP 520: Compilers – S. Ali

	COMP 520 - Compilers
	Reminders
	Announcements
	Announcements (2)
	Why are we using ASTs?
	Why are we using ASTs?
	Visitor Model
	AST
	AST (2)
	Concrete Visit Method
	Recall Creating Statement Lists
	A peek into parseStatement
	A peek into visitStatement (2)
	Calling an Abstract Method
	Calling an Abstract Method (2)
	Calling an Abstract Method (3)
	Calling an Abstract Method (4)
	Calling an Abstract Method (5)
	PA2 - ASTs
	The Terrifying, Terrific, Tantalizing, Tormenting Truth�	of ASTs
	Identification
	Package…
	ClassDecl
	Visiting a Method
	The Mysteries of References
	Recall: Creating References
	Recall: Creating References (2)
	Note: If Identifiers have a Decl, then References map to a Decl too!
	Note: If Identifiers have a Decl, then References map to a Decl too!
	Parsing VS Grammar
	Parsing VS Grammar (2)
	Parsing VS Grammar (3)
	IdRef
	IdRef (2)
	IdRef (Recall visitIdentifier)
	The mysteries of RefExpr
	Recall Fail351.java
	Recall: CallExpr / CallStmt
	You did this in PA2
	You did this in PA2 (2)
	Thus, PA3 check becomes easier.
	The mysteries of QualRef
	Figuring out QualRef
	Figuring out QualRef
	Figuring out QualRef
	How does this help in PA3?
	PA3 Summarized
	PA3 Summarized (2)
	PA3 Summarized (3)
	PA3 Summarized (4)
	PA3 Summarized (5)
	PA3 Summarized (6)
	PA3 Summarized (7)
	PA3 Type-Checking
	Midterm 2 Review
	Midterm 2 is shorter
	Optimization
	Byte Encoding / ModRMSIB
	What should you know?
	Side notes about PA4
	Feedback I’ve gotten thus far
	Questions?
	End
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67

